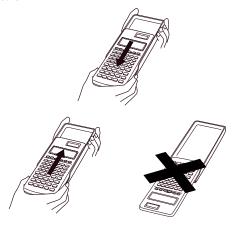
fx-100W fx-115W fx-570W
fx-991W User's Guide Guía del usuario Mode d'emploi Bedienungsanleitung
Guida dell'utilizzatore

• ENGLISH •

Removing and Replacing the Calculator's Cover


. To Remove the cover

Grasp the top of the cover, and slide the unit out from the bottom

• To Replace the cover

Grasp the top of the cover, and slide the unit in from the bottom.

Always slide the unit into the cover with the unit's display end first. Never slide the keyboard end of the unit into the cover.

Safety Precautions

Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference

Caution

This symbol is used to indicate information that can result in personal injury or material damage if ignored.

Batteries

- After removing the batteries from the calculator, put them in a safe place where there is no danger of them getting into the hands of small children and accidently swallowed.
- Keep batteries out of the reach of small children. If accidently swallowed, consult with a physician immediately.
- Never charge batteries, try to take batteries apart, or allow batteries to become shorted. Never expose batteries to direct heat or dispose of them by incineration.
- Misuse of batteries can cause them to leak acid that can cause damage to nearby items and creates the possibility of fire and personal injury.
 - Always make sure that a battery's positive ⊕ and negative ⊖ sides are facing correctly when you load it into the calculator.
 - Remove the batteries if you do not plan to use the calculator for a long time.
 - Use only the type of batteries specified for this calculator in this manual.

Disposing of the Calculator

 Never dispose of the calculator by burning it. Doing so can cause certain components to suddenly burst, creating the danger of fire and personal injury.

- The displays and illustrations (such as key markings) shown in this User's Guide are for illustrative purposes only, and may differ somewhat from the actual items they represent.
- The contents of this manual are subject to change without notice.
- In no event shall CASIO Computer Co., Ltd. be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials. Moreover, CASIO Computer Co., Ltd. shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Handling Precautions

- Be sure to press the P button on the back of the calculator (step ⑥ on page 35 or 36) before using it for the first time (fx-570W/fx-100W).
- Be sure to press the ON key before using the calculator for the first time (fx-991W/fx-115W).
- Even if the calculator is operating normally, replace the battery at least once every three years for the fx-570W/fx-991W/fx-115W, or at least once every two years for the fx-100W.
 - Dead battery can leak, causing damage to and malfunction of the calculator. Never leave the dead battery in the calculator.
- The battery that comes with the calculator when you purchase it is for testing only. It may not provide full service life.
- Low battery power can cause memory contents to become corrupted or lost completely. Always keep written records of all important data.

Avoid use and storage in areas subjected to temperature extremes.

Very low temperatures can cause slow display response, total failure of the display, and shortening of battery life. Also avoid leaving the calculator in direct sunlight, near a window, near a heater or anywhere else it might become exposed to very high temperatures. Heat can cause discoloration or deformation of the calculator's case, and damage to internal circuitry.

 Avoid use and storage in areas subjected to large amounts of humidity and dust.

Take care never to leave the calculator where it might be splashed by water or exposed to large amounts of humidity or dust. Such elements can damage internal circuitry.

- Never drop the calculator or otherwise subject it to strong impact.
- Never twist or bend the calculator.

Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending.

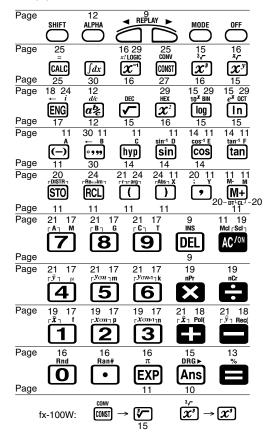
- . Never try to take the calculator apart.
- Never press the keys of the calculator with a ball-point pen or other pointed object.
- Use a soft, dry cloth to clean the exterior of the unit.
 If the calculator becomes very dirty, wipe it off with a cloth moistened in a weak solution of water and a mild neutral household detergent. Wring out all excess moisture before wiping the calculator. Never use thinner, benzine or other volatile agents to clean the calculator. Doing so can remove printed markings and damage the case.

Contents

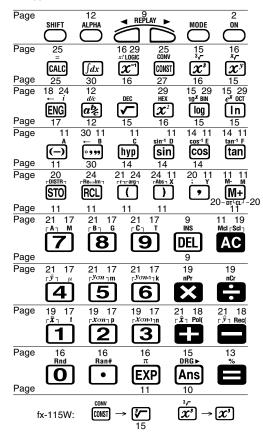
Safety Precautions	
Handling Precautions	
Two-line Display	5
Key Layout	
Before Starting Calculations	
■ Modes	
■Input Capacity	
■ Making Corrections During Input ■ Replay Function	
■ Error Locator	
■ Exponential Display Formats	
■ Answer Memory	
Basic Calculations	11
Memory Calculations	
■ Independent Memory	
■Variables	
Fraction Calculations	. 12
■ Fraction Calculations	
■ Decimal-to-Fraction Conversion	
■ Fraction-to-Decimal Conversion	. 12
Percentage Calculations	. 13
Scientific Function Calculations	
■ Trigonometric/Inverse Trigonometric Functions	. 14
■ Hyperbolic/Inverse Hyperbolic Functions	
Angle Unit Conversion	. 15
Common and Natural Logarithms/ Antilogarithms	15
■ Square Roots, Cube Roots, Roots, Squares,	. 15
Cubes, Reciprocals, Factorials,	
Random Numbers and π	15
■FIX, SCI, RND	
■ ENG Calculations	
■ Inputting ENG Calculation Symbols	
Permutation	
■ Combination	

Statistical Calculations	.19
■ Standard Deviation (SD Mode)	. 19
■ Probability Distribution Calculations	. 20
■ Regression Calculations (REG Mode)	. 21
Complex Number Calculations	
(CMPLX Mode)	23
■ Absolute Value/Argument Calculation	. 24
Formula Memory	24
Metric Conversions (fx-570W/fx-991W)	25
Scientific Constants (fx-570W/fx-991W)	26
Base-n Calculations	28
Integration Calculations	.30
Degrees, Minutes, Seconds Calculations	30
Technical Information	31
■When you have a problem	. 31
■Error Messages	. 31
Order of Operations	. 32
■Stacks	. 33
■ Power Supply	. 34
■Input Ranges	. 37
Specifications	39

Two-line Display


You can simultaneously check the calculation formula and its answer.

The first line displays the calculation formula.


The second line displays the answer.

Key Layout

<fx-570W>

<fx-991W>

Before Starting Calculations...

■ Modes

Application	Mode Name	Mode Indicator
Calculation Modes		
Normal calculations	COMP	_
Complex number calculations	CMPLX	CMPLX
Standard deviation calculations	SD	SD
Regression calculations	REG	REG
Base-n calculations	BASE-N	b (binary) o (octal) d (decimal) H (hexadecimal)
Angle Unit Modes		
Degrees	DEG	D
Radians	RAD	R
Grads	GRA	G
Display Modes		
Exponential notation (Canceling FIX and SCI specification)	NORM1 NORM2	- -
Number of decimal place specification	FIX	Fix
Number of significant digit specification	SCI	Sci
Exponential display range specifications	ENG	ENG

Note!

- Mode indicators appear in the lower part of the display, except for the Base-n indicators which appear in the exponent part of the display.
- The ENG mode cannot be selected while the calculator is in the CMPLX or BASE-N mode.

- You cannot set the angle unit or the display mode while the calculator is in the BASE-N mode.
- The COMP, CMPLX, SD, and REG modes can be used in combination with the angle unit modes.
- Be sure to check the current calculation mode (SD, REG, COMP, CMPLX) and angle unit mode (DEG, RAD, GRA) before beginning a calculation.

■ Input Capacity

The memory area used for calculation input can hold 79 "steps." Whenever you input the 73rd step of any calculation, the cursor changes from "_" to "\left\textit{\textit{\textit{m}}\textit{\

■ Making Corrections During Input

- Press mer Ws to change to an insert cursor [3]. Inputting something while the insert cursor is on the display inserts the input at the insert cursor position.
- Press , , , , or = returns to the normal cursor from the insert cursor.

■ Replay Function

- Pressing
 or
 recalls the last calculation you performed. You can then make any changes you want in the calculation and re-execute it.
- Pressing does not clear Replay memory, so you can recall the last calculation even after you press c.
- Replay memory is cleared whenever you start a new calculation, change to another mode, or turn off power.

■ Error Locator

 Pressing or after an error occurs displays the calculation with the cursor positioned at the location where the error occurred.

■ Exponential Display Formats

This calculator can display up to 10 digits. Larger values are automatically displayed using exponential notation. In the case of decimal values, you can select between two formats that determine at what point exponential notation is used. Press [more more more as a 1 (or 2) to select NORM 1 or NORM 2

NORM 1

With NORM 1, exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than two decimal places.

NORM 2

With NORM 2, exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than nine decimal places.

All of the examples in this manual show calculation results using the NORM 1 format.

■ Answer Memory

- Whenever you press after inputting values or an expression, the calculated result is automatically stored in Answer Memory. You can recall Answer Memory contents by pressing [Ans].
- Answer Memory can store up to 12 digits for the mantissa and two digits for the exponent.
- Answer Memory contents are not changed if the operation performed by any of the above key operations results in an error.

Basic Calculations

- · Use the COMP mode for basic calculations.
- Example 1: $3 \times (5 \times 10^{-9})$

3 X (5 EXP (-) 9) = 1.5⁻⁰⁸

• Example 2: 5×(9+7)

5 **x** (9 **+** 7) **=** 80.

• You can skip all D operations before .

Memory Calculations

■ Independent Memory

- Values can be input directly into memory, added to memory, or subtracted from memory. Independent memory is convenient for calculating cumulative totals.
- Independent memory uses the same memory area as variable M.
- To clear independent memory (M), input 0 510 M.
- Example:

			23 🛨 9 STO M	32.
-)	53 - 6 45×2		53 - 6 M+	47.
	(Total)	-11	45 × 2 SHIFT M-	90.
			RCL M	-11.

Variables

- There are nine variables (A through F, M, X and Y), which can be used to store data, constants, results, and other values.
- Use the following operation to delete data assigned to all nine variables: [Mol] .

• Example: $\underline{193.2} \div 23 = 8.4$

 $193.2 \div 28 = 6.9$

193.2 STO A 🖶 23 🖃 8.4

ALPHA A ÷ 28 = 6.9

Fraction Calculations

■ Fraction Calculations

- Use the COMP mode for fraction calculations.
- Values are automatically displayed in decimal format whenever the total number of digits of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
- Example 1: $\frac{2}{3}$ + $1\frac{4}{5}$

2 4 3 1 1 4 4 4 5 5

2_7_15.

• Example 2: $\frac{1}{2} + 1.6$

1 4 2 1 1.6 2 2.1

Fraction/decimal calculation results are always decimal.

■ Decimal-to-Fraction Conversion

• Example: $2.75 \to 2\frac{3}{4}$ 2.75

2.75 🖪 2.

a½ 2_3_4.

SHIFT d/c 11 14.

■ Fraction-to-Decimal Conversion

• Example: $\frac{1}{2} \leftrightarrow 0.5$ (Fraction \leftrightarrow Decimal)

1 @% 2 🖪 1 _ 2.

[a½]	0.5
[a½]	1⊿2.

Percentage Calculations

- Use the COMP mode for percentage calculations.
- Example 1: To calculate 12% of 1500

1500 × 12 SHIFT % 180.

• Example 2: To calculate what percentage of 880 is 660

660 🕏 880 SHIFT % 75.

• Example 3: To add 15% onto 2500

2500 × 15 SHIFT % + 2875.

• Example 4: To discount 3500 by 25%

3500 🗷 25 💷 🦠 🗖 2625.

• Example 5: If 300 grams are added to a test sample originally weighing 500 grams, what is the percentage increase in weight?

 Example 6: If temperature changes from 40°C to 46°C, what percentage did it rise?

$$\frac{46-40}{40}$$
 × 100 = 15 (%)
46 • 40 • 5.

Scientific Function Calculations

- Use the COMP mode for scientific function calculations.
- $\pi = 3.14159265359$

■ Trigonometric/Inverse Trigonometric Functions

• Example 1: sin63°52'41"

• Example 2: $\cos\left(\frac{\pi}{3} \operatorname{rad}\right)$

MODE MODE MODE $2 \rightarrow$ "R" 0.5

• Example 3: $\cos^{-1} \frac{\sqrt{2}}{2} = \frac{\pi}{4}$ rad

MODE MODE $2 \rightarrow$ " \mathbb{R} " SHIFT \cos^2 ($\sqrt{}$ 2 \div 2)

Ans \div SHIFT π

0.785398163

0.25

• Example 4: tan-10.741

MODE MODE $1 \rightarrow$ "

SHIFT [137] 0.741 **(36.53844**)

■ Hyperbolic/Inverse Hyperbolic Functions

• Example 1: sinh 3.6

hyp sin 3.6 **=** 18.28545536

• Example 2: sinh-1 30

hyp SHIFT sin 30 = 4.094622224

■ Angle Unit Conversion

• Press shift to display the following menu.

D R G 1 2 3

- Pressing 1, 2, or 3 converts the displayed value to the corresponding angle unit.
- Example: To convert 4.25 radians to degrees

| MODE | MODE | MODE | 1 \rightarrow " D " | 4.25r | 243.5070629

■ Common and Natural Logarithms/ Antilogarithms

- Example 2: In 90 (= \log_e 90)

n 90 ■ 4.49980967

- Example 3: e^{10} SHIFT e^x 10 \blacksquare 22026.46579
- Example 4: 10^{1.5} SHIFT 10¹ 1.5
- Example 5: 2⁴ 2 x^y 4 = 16.

Square Roots, Cube Roots, Roots, Squares, Cubes, Reciprocals, Factorials, Random Numbers and π

• Example 1: $\sqrt{2} + \sqrt{3} \times \sqrt{5}$

▼ 2 + ▼ 3 ▼ ▼ 5 = 5.287196909

• Example 2: $\sqrt[3]{5} + \sqrt[3]{-27}$

SHIFT ₹ 5 **+** SHIFT ₹ (-) 27 **=** -1.290024053

(fx-100W/fx-115W: 🖤)

• Example 3: $\sqrt[7]{123}$ (= $123^{\frac{1}{7}}$) 7 SHIFT ▼ 123 **■** 1.988647795 Example 4: 123+30² 123 **+** 30 x^2 **=** 1023. 12 (x^3) • Example 5: 123 1728. • Example 6: $\frac{1}{\frac{1}{2} - \frac{1}{4}}$ (3x" - 4x") x" = 12. 8 SHIFT (x!) Example 7: 8! 40320. • Example 8: To generate a random number between 0 000 and 0 999 SHIFT Ran# 0.664 Example (results differ each time) • Example 9: 3π 3 SHIFT π **=** 9.424777961 FIX. SCI. RND • Example 1: 200 ÷ 7×14=400 200 **÷** 7 **×** 14 **=** 400 400.000 (Specifies three MODE MODE MODE 1 3 decimal places.) (Calculation continues using 10 200 🖨 7 🖃 28.571 display digits) X 14 E 400.000 Performing the same calculation using the specified number of decimal places

200 ♣ 7 ■ 28.571 (Internal rounding) SHIFT Red 28.571

■ 14 **■** 399.994

- Press MODE MODE MODE 3 1 to clear FIX specification.
- Example 2: 1÷ 3, displaying result with two significant digits (SCI 2)

MODE MODE MODE MODE 2 2 1 \div 3 = 3.3 $^{-01}_{
m Sci}$

• Press MODE MODE MODE 3 1 to clear SCI specification.

■ FNG Calculations

Example 1: To convert 56,088 meters to kilometers

56.088 ENG 56.088 03

• Example 2: To convert 0.08125 grams to milligrams

0.08125 **E**NG 81.25⁻⁰³

■ Inputting ENG Calculation Symbols

- wook wook wook wook of 1 enters the ENG mode in which ENG symbols can be used in calculations.
- To exit the ENG mode, press MODE MODE MODE MODE 2.
- The following are the nine ENG symbols that can be used in ENG mode calculations.

Key Operation	Unit	Symbol
SHIFT k	10 ³	k (kilo)
SHIFT M	106	M (Mega)
SHIFT G	10 ⁹	G (Giga)
SHIFT T	1012	T (Tera)
SHIFT M	10⁻³	m (milli)
SHIFT μ	10⁻6	μ (micro)
SHIFT n	10 ⁻⁹	n (nano)
SHIFT P	10-12	p (pico)
SHIFT f	10 ⁻¹⁵	f (femto)

- * For displayed values, the calculator selects the ENG symbol that makes the numeric part of the value fall within the range of 1 to 1000.
- * ENG symbols cannot be used when inputting fractions.
- * The ENG mode cannot be used in combination with the CMPLX, or BASE-N modes.
- Performing any of the key operations in the above table while you are not in the ENG mode inputs the exponential value in the "Unit" column (without inputting the ENG symbol).
- Example: 9÷10 = 0.9 m (milli)

In the ENG mode, even standard (non-ENG) calculation results are displayed using ENG symbols.



■ Coordinate Conversion (Pol(x, y), Rec (r, θ))

- Calculation results are automatically assigned to variables E and F.
- Example 1: To convert polar coordinates (r=2, θ=60°) to rectangular coordinates (x, y) (DEG mode)

- REL E, REL F swaps displayed value with value in memory.
- Example 2: To convert rectangular coordinates $(1, \sqrt{3})$ to polar coordinates (r, θ) (RAD mode)

RCL F 1.047197551

 nct E, nct F swaps displayed value with value in memory.

■ Permutation

- Example: To determine how many different 4-digit values can be produced using the numbers 1 through 7
 - Numbers cannot be duplicated within the same 4-digit value (1234 is allowed, but 1123 is not).

■ Combination

 Example: To determine how many different 4-member groups can be organized in a group of 10 individuals

Statistical Calculations

■ Standard Deviation (SD Mode)

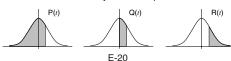
- Press [most] 1 to enter the SD Mode for statistical calculations using standard deviation.
- Data input always starts with self self to clear statistical memory.
- Input data is used to calculate values for $n, \Sigma x, \Sigma x^2, \bar{x}, \sigma n$ and σ_{n-1} which you can recall using the key operations noted nearby.

RCL A	Σx^2
RCL B	Σx
RCL C	n
SHIFT $\overline{\overline{\chi}}$	\bar{x}
SHIFT $\chi \sigma n$	σ_n
SHIFT XOn-1	⊙ n-1

• Example: To calculate σ_{n-1} , σ_n , \bar{x} , n, Σx , and Σx^2 for the following data: 55, 54, 51, 55, 53, 53, 54, 52

Enter SD Mode MODE MODE 1 SHIFT ScI = (Memory Clear) 55 DT 54 DT 51 DT 55 DT 52. 53 DT DT 54 DT 52 DT SD (Sample Standard Deviation O_{n-1}) SHIFT $\chi_{O_{n-1}}$ 1.407885953 (Population Standard Deviation On) SHIFT XOn1.316956719 SHIFT $\bar{\chi}$ 53.375 (Arithmetic Mean \bar{x}) RCL C 8 (Number of Data n) RCL B 427. (Sum of Values Σx) RCL A (Sum of Squares of Values Σx 2) 22805

Data Input Precautions


- DT DT inputs the same data twice.
- You can also input multiple entries of the same data using :. To input the data 110 ten times, for example, press 110 ser
 10 DT.
- The above results can be obtained in any order, and not necessarily that shown above.
- To delete data you have just input, press SHIFT CL.

■ Probability Distribution Calculations

• Press SHIFT DISTR to produce the screen shown below.

P(Q(R(→t 1 2 3 4

 Input a value from 1 to 4 to select the probability distribution calculation you want to perform.

 Example: Using the x-data values input in the example on page 20, determine the normalized variate (→t) for x = 53 and normal probability distribution P(t).

53 SHIP DISTR $4 (\rightarrow t)$ \blacksquare 0.38974

■ Regression Calculations (REG Mode)

- Press [most] 2 to enter the REG mode and then select one of the following regression types.
 - 1: Linear regression
 - 2: Logarithmic regression
 - 3: Exponential regression
 - Power regression
 - ▶ 2: Inverse regression
 - Quadratic regression
- Data input always starts with set sol to clear statistical memory.
- The values produced by a regression calculation depend on the values input, and results can be recalled using the key operations shown in the table below.

RCL A	Σx^2	SHIFT (XOn-1	$x\sigma_{n-1}$
RCL B	Σx	SHIFT \overline{y}	\bar{y}
RCL C	n	SHIFT [YOn]	$y\sigma_n$
RCL D	Σy^2	SHIFT YON-1	$y\sigma_{n-1}$
RCL E	Σy	SHIFT A	Regression coefficient A
RCL F	Σxy	SHIFT B	Regression coefficient B
RCL M	Σx^3	SHIFT C	Regression coefficient C
RCL X	$\sum x^2y$	SHIFT r	Correlation coefficient r
RCL Y	Σx^4	SHIFT $\widehat{\chi}$	\hat{x}
SHIFT $\overline{\chi}$	\bar{x}	SHIFT \widehat{y}	ŷ
SHIFT XOn	$\chi\sigma_n$		

Linear Regression

The regression formula for linear regression is: y = A + Bx.

• Example: Atmospheric Pressure vs. Temperature

Temperature	Atmospheric Pressure
10°C	1003 hPa
15°C	1005 hPa
20°C	1010 hPa
25°C	1011 hPa
30°C	1014 hPa

Perform linear regression to determine the regression formula terms and correlation coefficient for the data nearby. Next, use the regression formula to estimate atmospheric pressure at 18°C and temperature at 1000 hPa.

Enter REG Mode (Linear Regression)

MODE MODE 2 1

(Regression Coefficient B)

SHIFT ScI = (Memory Clear)

10 7 1003 PT 15 7 1005 PT

20 7 1010 PT 25 7 1011 PT

30 1014 DT REG

30.

0.56

SHIFT A 997.4 (Regression Coefficient A) SHIFT B

SHIFT [0.982607368 (Correlation Coefficient r)

18 SHIFT ŷ (Atmospheric Pressure at 18°C) 1007.48

1000 SHIFT \hat{x} 4.642857143 (Temperature at 1000 hPa)

Quadratic Regression

- The regression formula for quadratic regression is: $y = A + Bx + Cx^2$.
- Input data using the following key sequence. <x-data> • <v-data> • T

· Example:

x_i	Уi
29	1.6
50	23.5
74	38.0
103	46.4
118	48.0

Perform quadratic regression to determine the regression formula terms and correlation coefficient for the data nearby. Next, use the regression formula to estimate the values for \hat{v} (estimated value of y) for $x_i = 16$ and \hat{x} (estimated value of x) for $y_i = 20$.

Enter REG mode (Quadratic regression)				
MODE MODE 2 3				
SHIFT ScI				
29 🖸 1.6 🖭 50				
74 • 38.0 DT 10				
11	8 → 48.0 DT	118. REG		
(Regression Coefficient A)	SHIFT A	-35.59856934		
(Regression Coefficient B)	SHIFT B	1.495939413		
(Regression Coefficient C)	SHIFT C	-6.71629667 ⁻⁰³		
$(\hat{y} \text{ when } xi = 16)$	16 SHIFT ŷ	-13.38291067		
$(\hat{x}_1 \text{ when } yi = 20)$	20 SHIFT \hat{x}	47.14556728		
$(\hat{x}_2 \text{ when } yi = 20)$	SHIFT $\widehat{\chi}$	175.5872105		

Data Input Precautions

- DT DT inputs the same data twice.
- You can also input multiple entries of the same data using III . To input the data "20 and 30" five times, for example, press 20 30 SHIFT ; 5 DT.
- · The above results can be obtained in any order, and not necessarily that shown above.
- To delete data you have just input, press SHIFT CL.

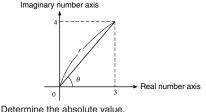
Complex Number Calculations (CMPLX Mode)

- Press MODE 2 to enter the CMPLX Mode for calculations that include complex numbers.
- · You can use variables A, B, C and M only. Variables D, E. F. X. and Y are used for storage of the imaginary parts of values and so cannot be used by you.

• Example: (2 + 3i) + (4 + 5i)

Enter CMPLX Mode 600 2

(2 + 3i) + 6.


Real number part

SHIFT] [Re→Im]

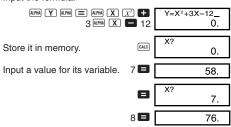
Imaginary number part

■ Absolute Value/Argument Calculation

- The procedure described below can be used to determine the absolute value (Abs) and argument (arg) for a complex number of the format Z = a + bi, which is presumed to exist as coordinates on a Gaussian plane.
- Example: To obtain the absolute value (r) and argument (θ) for the complex number 3+4i, when DEG is set for the angle unit mode

Mans (3 + 4 i) = 5.

Determine the argument.


Determine the argument.

SHIFT arg (3 🛨 4 i) 🖃 53.13010235

Formula Memory

 Formula memory lets you input a single formula in memory, and then input values for the formula's variables to calculate results.

- Memory can hold a single formula, up to 79 steps long.
 This function can be used in the COMP or CMPLX mode only.
- Note that the formula is actually stored in memory when you press the we in the sequence below.
- Example: To save the following formula, recall it, and then use it to calculate a result: Y = X² + 3X - 12 Input the formula.

 Formula memory is cleared whenever you start a new calculation, change to another mode, or turn off power.

Metric Conversions (fx-570W/fx-991W)

- A total of 20 different conversion pairs are built-in to provide quick and easy conversion to and from metric units.
- See the Conversion Pair Table on page 26 for a complete list of available conversion pairs.
- Example: To convert 31 inches to centimeters

01 is the inches-to-centimeters conversion pair number.

Conversion Pair Table

Based on ISO Standard (1992) data and CODATA Bulletin 63 (1986) data.

Number	Conversion Pair	Number	Conversion Pair		
01	in → cm	21	$oz \rightarrow g$		
02	cm → in	22	g → oz		
03	ft → m	23	lb → kg		
04	$m \rightarrow ft$	24	kg → lb		
05	yd → m	25	atm → Pa		
06	$m \rightarrow yd$	26	Pa → atm		
07	mile → km	27	mmHg → Pa		
08	km → mile	28	Pa → mmHg		
09	n mile → m	29	hp → kW		
10	m → n mile	30	kW → hp		
11	acre → m ²	31	kgf/cm²→ Pa		
12	m ² → acre	32	Pa → kgf/cm ²		
13	gal (US) → ℓ	33	kgf•m → J		
14	ℓ → gal (US)	34	J → kgf•m		
15	gal (UK) → ℓ	35	lbf/in² → kPa		
16	ℓ → gal (UK)	36	kPa → lbf/in²		
17	pc → km	37	°F → °C		
18	km → pc	38	°C → °F		
19	km/h → m/s	39	J → cal		
20	m/s → km/h	40	cal → J		

Scientific Constants (fx-570W/fx-991W)

- A total of 40 commonly-used scientific constants, such as the speed of light in a vacuum and Planck's constant are built-in for quick and easy lookup whenever you need them.
- Simply input the number that corresponds to the scientific constant you want to look up and it appears instantly
 on the display.
- See the Scientific Constant Table on pages 27 and 28 for a complete list of available constants.

• Example: To determine how much total energy a person weighing 65kg has $(E = mc^2)$

28 is the "speed of light in

ght in v	acuum" constar	nt number
	65Co_	0.
	250 2	
χ^2	65Co ² _	0.
	65Co ² 5.841908	662 18

Scientific Constant Table

Based on ISO Standard (1992) data and CODATA Bulletin 63 (1986) data.

Number	Constant Name	Symbol
01	proton mass	mp
02	neutron mass	mn
03	electron mass	me
04	muon mass	$m\mu$
05	Bohr radius	a ₀
06	Planck's constant	h
07	nuclear magneton	μΝ
08	Bohr magneton	μΒ
09	Planck's constant, rationalized (h-bar)	₹1
10	fine-structure constant	α
11	classical electron radius	re
12	electron Compton wavelength	λc
13	proton gyromagnetic ratio	γр
14	proton Compton wavelength	λср
15	neutron Compton wavelength	λcn
16	Rydberg constant	R∞
17	atomic mass unit	u
18	proton magnetic moment	μρ
19	electron magnetic moment	με
20	neutron magnetic moment	μn
21	muon magnetic moment	μμ
22	Faraday constant	F

Number	Constant Name	Symbol
23	elementary charge	е
24	Avogadro constant	NA
25	Boltzmann constant	k
26	molar volume of ideal gas	Vm
27	molar gas constant	R
28	speed of light in vacuum	C _o
29	first radiation constant	C ₁
30	second radiation constant	C ₂
31	Stefan-Boltzmann constant	σ
32	permittivity of vacuum	ε ₀
33	permeability of vacuum	μ_0
34	magnetic flux quantum	ϕ_{\circ}
35	standard acceleration of gravity	g
36	astronomical unit	AU
37	parsec	рс
38	Celsius temperature	t
39	Newtonian constant of gravitation	G
40	standard atmosphere	atm

Base-n Calculations

- In addition to decimal values, calculations can be performed using binary, octal and hexadecimal values.
- You can specify the default number system to be applied to all input and displayed values, and the number system for individual values you input.
- You cannot use scientific functions in binary, octal, decimal, and hexadecimal calculations. You cannot input values that include decimal part and an exponent.
- If you input a value that includes a decimal part, the unit automatically cuts off the decimal part.
- Negative binary, octal, and hexadecimal values are produced by taking the two's complement.
- You can use the following logical operators between values in Base-n calculations: and (logical product), or (logical sum), xor (exclusive logical sum), xnor (exclusive logical sum negation), Not (negation), and Neg (minus).

	$0 \le r \le$	0111111111
Octal	4000000000 ≦ <i>x</i> ≦	777777777
		377777777
Decimal	$-2147483648 \le x \le$	
Hexadecimal	$80000000 \le x \le$	
	0 ≤ <i>x</i> ≤	7FFFFFF
• Example 1: To produce a binar	perform the following result:	ng calculation and
101112 + 11010	2	
Binary mode	MODE MODE 3 BIN	0. b
	10111 ₂ 11010 ₂	0. b
		110001. b
. F		
produce an octa	perform the following result:	ig calculation and
7654 ₈ ÷ 12 ₁₀		
Octal mode	MODE MODE 3 OCT	0. °
	ogic 4 (o) 7654 ₈ 🚼	
LOGIC	$\begin{array}{c c} \text{LOGIC} & \textbf{1} & \textbf{(d)} \textbf{12}_{10} \\ \end{array}$	0. °
		516. °
• Example 3: To produce a hexa	perform the followin decimal result:	ng calculation and
120 ₁₆ or 1101 ₂		
Hexadecimal m	iode Mode Mode 3 HEX	0. н
	120 ₁₆ LOGIC 2 (or)	
LOGIC	LOGIC LOGIC 3 (b)1101 ₂	0. ^H
		12d. ^H

• The following are the allowable ranges for each of the available number systems.

Binary

 $1000000000 \le x \le 11111111111$

Integration Calculations

 The following four inputs are required for integration calculations: a function with the variable x; a and b, which define the integration range of the definite integral; and n, which is the number of partitions (equivalent to N = 2ⁿ) for integration using Simpson's rule.

 $\int dx$ expression • a • b • n

- Use the COMP mode for integration calculations.
- **Example:** To calculate: $\int_{1}^{5} (2x^2 + 3x + 8) dx$

$\int dx$ 2 ALPHA (\mathbf{X}) $(\mathbf{X})^2$ + 3 ALPHA (\mathbf{X}) +	
8 • 1 • 5 • 6 •	0.
etal B	150.6666667

Note!

- You can specify an integer in the range of 1 to 9 as the number of partitions, or you can skip input of the number of partitions entirely, of you want.
- Internal integration calculations may take considerable time to complete.
- Display contents are cleared while an integration calculation is being performed internally.

Degrees, Minutes, Seconds Calculations

- You can perform sexagesimal calculations using degrees (hours), minutes, and seconds, and convert between sexagesimal and decimal values.
- Example 1: To convert the decimal value 2.258 to a sexagesimal value

2.258	2.258
SHIFT (;,,,	2°15°28.8

• Example 2: To perform the following calculation: 12°34'56" × 3 45

12 ··· 34 ··· 56 ·· 🗶 3.45 0.

Technical Information

■ When you have a problem.....

If calculation results are not what you expect or if an error occurs, perform the following steps.

- 1. MODE 1 (COMP mode)
- 2. MODE MODE 1 (DEG mode)
- 3. MODE MODE MODE 3 1 (NORM 1 mode)
- Check the formula you are working with to confirm it is correct.
- 5. Enter the correct modes to perform the calculation and try again.

<fx-570W/fx-100W>

If the above steps do not correct your problem, press the P button (see page 35 or 36) on the back of the calculator to reset it. Pressing the P button deletes all data stored in calculator memory. Make sure you always keep written copies of all important data.

<fx-991W/fx-115W>

If the above steps do not correct the problem, press the ON key. The calculator performs a self-check operation and deletes all data stored in memory if any abnormality is detected. Make sure you always keep written copies of all important data.

■ Error Messages

Ma ERROR

- Cause
 - Calculation result is outside the allowable calculation range.
 - Attempt to perform a function calculation using a value that exceeds the allowable input range.

 Attempt to perform an illogical operation (division by zero, etc.).

Action

 Check your input values and make sure they are all within the allowable ranges. Pay special attention to values in any memory areas you are using.

Stk ERROR

Cause

Capacity of the numeric stack or operator stack is exceeded.

Action

- Simplify the calculation. The numeric stack has 10 levels and the operator stack has 24 levels.
- Divide your calculation into two or more separate parts.

Syn ERROR

Cause

• Attempt to perform an illegal mathematical operation.

Action

Press
 or
 to display the calculation with the cursor located at the location of the error. Make necessary corrections.

Arg ERROR

Cause

· Improper use of argument

Action

 Press or to display the location of the cause of the error and make required corrections.

■ Order of Operations

Calculations are performed in the following order of precedence.

- ① Coordinate transformation: Pol (x, y), Rec (r, θ) Integrations: $\int dx$
- ② Type A functions:

With these functions, the value is entered and then the function key is pressed.

$$x^2, x^{-1}, x!, \circ$$

3 Powers and roots: x^y , $\sqrt{}$

- $(4) a^b/c$
- (\$\hat{s}\) Abbreviated multiplication format in front of \$\pi\$, memory name, or variable name: 2π , 5A, \$\pi A\$ etc.
- ⑥ Type B functions:

With these functions, the function key is pressed and then the value is entered.

- $\sqrt{\ }$, $\sqrt[3]{\ }$, log, ln, e^x , 10°, sin, cos, tan, sin-1, cos-1, tan-1, sinh, cosh, tanh, sinh-1, cosh-1, tanh-1, (-)
- $\ensuremath{\overline{\bigcirc}}$ Abbreviated multiplication format in front of Type B functions: 2 $\sqrt{3}$, Alog2 etc.
- 8 Permutation and combination: nPr, nCr
- (9) ×.÷
- 10 +. -
- * Operations of the same precedence are performed from right to left. $e^x \ln \sqrt{-120} \rightarrow e^x \{\ln(\sqrt{-120})\}$
 - Other operations are performed from left to right.
 - * Operations enclosed in parentheses are performed first.

Stacks

This calculator uses memory areas, called "stacks," to temporarily store values (numeric stack) and commands (command stack) according to their precedence during calculations. The numeric stack has 10 levels and the command stack has 24 levels. A stack error (Stk ERROR) occurs whenever you try to perform a calculation that is so complex that the capacity of a stack is exceeded.

■ Power Supply

The type of battery you should use depends on the model number of your calculator.

<fx-991W/fx-115W>

The TWO WAY POWER system actually has two power supplies: a solar cell and a G13 Type (LR44) button battery. Normally, calculators equipped with a solar cell alone can operate only when relatively bright light is present. The TWO WAY POWER system, however, lets you continue to use the calculator as long as there is enough light to read the display.

Replacing the Battery

Either of the following symptoms indicates battery power is low, and that the battery should be replaced.

- Display figures are dim and difficult to read in areas where there is little light available.
- \bullet Nothing appears on the display when you press the $\boxed{\texttt{ON}}$ key.

· To replace the battery

- ① Remove the six screws that hold the back cover in place and then remove the back cover.
- ② Remove the old battery.
- ③ Wipe off the sides of new battery with a dry, soft cloth. Load it into the unit with the positive ⊕ side facing up (so you can see it).
- ④ Replace the back cover and secure it in place with the six screws.
- ⑤ Press ON to turn power on. Be sure not to skip this step.

<fx-570W>


This calculator is powered by single G13 Type (LR44) button battery.

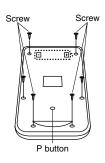
. Replacing the Battery

Dim figures on the display of the calculator indicate that battery power is low. Continued use of the calculator when the battery is low can result in improper operation. Replace the battery as soon as possible when display figures become dim.

To replace the battery

- 1) Press off to turn power off.
- ② Remove the two screws that hold the battery cover in place and then remove the battery cover.
- 3 Remove the old battery.
- ④ Wipe off the side of new battery with a dry, soft cloth. Load it into the unit with the positive ⊕ side facing up (so you can see it).
- ⑤ Replace the battery cover and secure it in place with the two screws.
- ⑥ Use a thin, pointed object to press the P button. Be sure not to skip this step.
- 7 Press (To turn power on.

< fx-100W >


This calculator is powered by single AA-size battery.

· Replacing the Battery

Dim figures on the display of the calculator indicate that battery power is low. Continued use of the calculator when the battery is low can result in improper operation. Replace the battery as soon as possible when display figures become dim.

· To replace the battery

- ① Press OFF to turn power off.
- ② Remove the six screws that hold the back cover in place and then remove the back cover.
- 3 Remove the old battery.
- ④ Load a new battery into the unit so it's positive ⊕ and negative ⊖ sides are facing correctly.
- ⑤ Replace the back cover and secure it in place with the six screws.
- ⑥ Use a thin, pointed object to press the P button. Be sure not to skip this step.
- (7) Press (To turn power on.

Auto Power Off

Calculator power automatically turns off if you do not perform any operation for about six minutes. When this happens, press (fx-991W/fx-115W:) to turn power back on.

■ Input Ranges

Internal digits: 12

Accuracy: As a rule, accuracy is ±1 at the 10th digit.

Functions		Input Range
sinx	DEG $0 \le x \le 4.499999999 \times 10^{10}$	
	RAD	0≦ x ≦785398163.3
	GRA	$0 \le x \le 4.499999999 \times 10^{10}$
cosx	DEG	$0 \le x \le 4.500000008 \times 10^{10}$
	RAD	0≦ <i>x</i> ≦785398164.9
	GRA	$0 \le x \le 5.000000009 \times 10^{10}$
tanx	DEG	Same as $\sin x$, except when $ x = (2n-1) \times 90$.
	RAD	Same as $\sin x$, except when $ x = (2n-1) \times \pi/2$.
	GRA	Same as $\sin x$, except when $ x = (2n-1) \times 100$.
sin⁻¹x	0≦ <i>x</i>	·! ≤1
COS ⁻¹ X	0= \lambda = 1	
tan-1x	$0 \le x \le 9.999999999 \times 10^{99}$	
sinhx	0≦ x ≤230.2585092	
coshx	0= x =200.200002	
sinh ⁻¹ x	0≦ x ≦4.99999999×10 ⁹⁹	
cosh ⁻¹ x	0 pr = 1.3000000000000000000000000000000000000	
tanhx	$0 \le x \le 9.999999999 \times 10^{-1}$	
tanh ⁻¹ x	0= M = 0.00000000 \ 10	
logx/lnx	0< x	
10 ^x	$-9.99999999 \times 10^{99} \le x \le 99.99999999$	
e^x	$-9.999999999 \times 10^{99} \le x \le 230.2585092$	
\sqrt{x}	0≦ x < 1 × 10 ¹⁰⁰	
χ^2	$ x < 1 \times 10^{50}$	
1/ <i>x</i>	$ x < 1 \times 10^{100}; x \neq 0$	
³ √ <i>x</i>	$ x < 1 \times 10^{100}$	
x!	0≦ <i>x</i>	\leq 69 (x is an integer)

Functions	Input Range
nPr	$0 \le n \le 99, r \le n \ (n, r \text{ is an integer})$ $1 \le \{n!/(n-r)!\} \le 9.999999999 \times 10^{99}$
nCr	$0 \le n \le 99, r \le n \ (n, r \text{ is an integer})$
	$ x , y \le 9.999999999 \times 10^{49}$
Pol(x, y)	$ x , y \equiv 3.999999999 \times 10^{99}$ $(x^2 + y^2) \le 9.999999999 \times 10^{99}$
$Rec(r, \theta)$	0≦ r ≦9.999999999×10 ⁹⁹
1100(7, 0)	θ : Same as $\sin x$, $\cos x$
	$ a , b, c < 1 \times 10^{100}$
0,111	$0 \le b, c$
	$ x < 1 \times 10^{100}$
o, "	Decimal ↔ Sexagesimal Conversions
	$0^00^00^0 \le x \le 999999^059^0$
	$x>0: -1\times10^{100} < y\log x < 100$
x^y	x=0: y>0 $x<0: y=n, \frac{1}{2n+1}$ (<i>n</i> is an integer)
	However: $-1 \times 10^{100} < y \log x < 100$
	$v>0$: $x \neq 0$
	y>0: $x+0-1\times10^{100}<1/x\log y<100$
$x\sqrt{y}$	v=0: $x>0$
	$y < 0: x = 2n + 1, \frac{1}{n} (n \neq 0; n \text{ is an integer})$
	However: $-1 \times 10^{100} < 1/x \log y < 100$
	Total of integer, numerator, and denominator
a^{b}/c	must be 10 digits or less (including division
	marks).
	$ x < 1 \times 10^{50}$
	$ y < 1 \times 10^{50}$
SD (DEC)	$ n < 1 \times 10^{100}$
(REG)	$x\sigma n, y\sigma n, \bar{x}, \bar{y}$ A, B, $r: n \neq 0$
	$x_{\sigma n-1}, y_{\sigma n-1}: n \neq 0, 1$
	жоп-1, уоп-1 . n ¬ 0, 1

^{*} Erros are cumulative with such internal continuous calculations as x^{y} , ${}^{x}\sqrt{}$, x^{l} , and ${}^{3}\sqrt{x}$, so accuracy may be adversely affected.

Specifications

Power Supply:

fx-100W: Single AA-size battery (R6P (SUM-3)) fx-570W: Single G13 Type button battery (LR44)

fx-115W/fx-991W:

Solar cell and a single G13 Type button battery (LR44)

Battery Life:

fx-100W: Approximately 17,000 hours continuous display of flashing cursor.

Approximately 2 years when left with power turned off

fx-570W: Approximately 12,000 hours continuous display of flashing cursor.

Approximately 3 years when left with power turned off.

fx-115W/fx-991W:

Approximately 3 years (1 hour use per day).

Dimensions:

fx-100W: 19.2(H)×76(W)×164(D) mm ³/₄"(H)×3"(W)×6⁷/₁₆"(D)

fx-115W/fx-570W/fx-991W:

 $10(H) \times 76(W) \times 150(D) \text{ mm}$ $3/8"(H) \times 3"(W) \times 5^{7}/8"(D)$

Weight:

fx-100W: 114g (4 oz) including battery

fx-115W/fx-570W/fx-991W: 85 g (3 oz) including battery

Power Consumption: 0.0001W

Operating Temperature: 0°C ~ 40°C (32°F ~ 104°F)

CASIO ELECTRONICS CO., LTD. Unit 6, 1000 North Circular Road, London NW2 7JD, U.K.

CASIO_®

CASIO COMPUTER CO., LTD.

6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan